PRODUCT FICHE | Brand | Beko | | | |--|--|------|--| | Model | JDC673X | 99.8 | | | | rgy Efficiency Index per cavity EEI cavity | | | | Energy efficiency class | | 0.70 | | | Energy consumption (kWh)-Conventional per cycle (1) | | | | | Energy consumption (KWh)-F | Forced air convection per cycle (1) | - | | | Usable volume (litres) | | 36 | | | Number of cavity | | 2.0 | | | Heat source per cavity | Electrical | × | | | | Gas | | | | 0 (0) | Mix | | | | | INSTRUCTION BOOKLET PRODUCT INFORMATION | | | | | rective 2009/125/EC - Regulation No 66/2014 | | | | rand Beko | | | | | Model | JDC673X | | | | | Free Standing | × | | | Type of oven | Built-in | _^ | | | Mass of the appliance(M) (Ne | | 59.6 | | | Number of cavity | it vvergitty rig | 2.0 | | | Number of cavity | Electrical | X | | | Heat source per cavity | Gas | | | | | Mix | | | | Jsable volume (litres) | | 36 | | | cavity of an electric heated of | ity) required to heat a standardised load in a
ven during a cycle in conventional mode per
al energy) EC electric cavity | 0.70 | | | Energy consumption required
electric heated oven during a
cavity(kWh/cycle)(electric fin | I to heat a standardised load in a cavity of an
cycle in fan-forced mode per
all energy) EC electric cavity | - | | | cavity of an oven during a cy | I to heat a standardised load in a gas-fired
cle in conventional mode per cavity
inal energy) EC gas cavity (1) | | | | | I to heat a standardised load in a gas-fired
cle in fan-forced mode per cavity (MJ/cycle)
EC gas cavity (1) | | | | | | ı | | | Energy Efficiency Index per of | cavity EEI cavity | 99.8 | | | Energy
Brand | Label Directi | ve EU 2010/30/EU-No65/2014 of ovens | | |---|--|--|--| | Brand | | | | | | | Bako | _ | | Model | | JDC673X | | | Energy Efficiency Inc | | EEI cavity | 104 | | Energy efficiency da | 58 | | A | | Energy consumption | (KNVII)-Lionve | ntional per cycle | _ | | Energy consumption | (kWh)-Forces | dair convection per cycle | 0.8 | | U sable volum e (litres | | | 61 | | Number of cavity | | | 2. | | | | Electrical
Gas | Х | | Heat source per cavi | У | Mix | | | | INST | RUCTION BOOKLET | | | | | DUCT INFORMATION | | | Comply u | | e 2009/125/E C - Regulation No 66/2014 | | | Brand | ar Eo Great | Beko Beko | _ | | Model | | JDC673X | | | Type of oven | | Free Standing | - 2 | | | | Built-in | 59 | | Mass of the applianc
Number of cavity | eyn) (Net We | igit) kg | 2.1 | | remote or Cavey | | Electrical | 2.1
X | | Heat source per cavi | у | Gas | _ | | U sable volum e ditres | | Mix | 66 | | | | quired to heat a standardised load in a | UE | | cavity of an electric h
cavity(kWh/cycle)(ele | eated oven d
ictric final en | uring a cycle in conventional mode per
ergy)EC electric cavity | | | electric heated oven | during a cycle | eat a standardised load in a cavity of an
s in fan-forced mode per
rrgy) EC electric cavity | 0.8 | | Energy consumption
cavity of an over dur | required to he | eat a standardised load in a gas-fred | | | cavity of an oven dur
(kWh/cycle)(gas final | ing a cycle in
energy) E C p
required to he
ing a cycle in | conventional mode per cavity (M.Mcycle)
gas cavity (1)
eat a standardised load in a gas-fired
fan.forced mode per cavity (M.Mcycle) | | | cavity of an oven dur
(kWh/cycle)(gas final
Energy consumption
cavity of an oven dur
(kWh/cycle)(gas final | ing a cycle in
energy) E.C.;
required to he
ing a cycle in
energy) E.C.; | conventional mode per cavity (M.Ncycle)
pas cavity (1)
set a standardised load in a gas-fred
fan-forced mode per cavity (M.J.Cycle)
pas cavity (1) | 104 | | cavity of an oven dur
(kWh/cycle)(gas final
Energy consumption
cavity of an oven dur
(kWh/cycle)(gas final
Energy Efficiency Inc | ing a cycle in
energy) E C p
required to hi
ing a cycle in
energy) E C p
ex per cavity
Informatio | conventional mode per cavity (M.Mcycle)
ass cavity (1) est a standardised load in a gas-fred
fan-discost mode per cavity (M.Mcycle)
ass cavity (1) EEI cavity for domestic electric hobs | 104 | | cavity of an oven dur
(kWh/cycle)(gas final
Energy consumption
cavity of an oven dur
(kWh/cycle)(gas final
Energy Efficiency Inc.
Comply v
Brand | ing a cycle in
energy) E C p
required to hi
ing a cycle in
energy) E C p
ex per cavity
Informatio | conventional mode per cavity (M.Mcycle)
as cavity (1)
set a standardised load in a gas-fred
translation of mode per cavity (M.Mcycle)
as cavity (1)
EEI cavity
Set of cavity
CEI cavity
Set of cavity
CEI cavity
Set of cavit | 104 | | cavity of an oven dur
(kWhi/cycle)(gas final
Energy consumption
cavity of an oven dur
(kWhi/cycle)(gas final
Energy Efficiency Inc
Comply v | ing a cycle in
energy) E C p
required to hi
ing a cycle in
energy) E C p
ex per cavity
Informatio | conventional mode per cavity (M.Mcycle)
past a standardised load in a gas-fred
fas-forced mode per cavity (M.Mcycle)
gas cavity (1)
For domestic electric hobs
vs 2000*125E C = Regulation No 80/2014 | | | cavity of an oven dur
(kWh/oyde) gas final
Energy consumption
cavity of an oven dur
(kWh/oyde) gas final
Energy Efficiency Inc.
Comply v
Brand
Model | ing a cycle in
energy) E C p
required to hi
ing a cycle in
energy) E C p
ex per cavity
Informatio | conventional mode per cavity (M.Mcycle)
sex as a way (1) in the cavity (M.Mcycle)
sex as yet (1) in the cavity (M.Mcycle)
as cavity (M.Mcycle)
sex cavity (M.Mcycle)
sex (1) in the (1 | | | cavity of an oven dur
(WWh/cycle) gas find
Energy consumption
cavity of an oven dur
(WWh/cycle) gas find
Energy Efficiency Inc.
Compty v
Brand
Model | ing a cycle in
energy) E.C.;
required to hing a cycle in
energy) E.C.;
ex per cavity
Informatio
ith EU directi | conventional mode per cavity (M.Mcycle) gas cavity (1) | × | | cavity of an oven dur
(WWh/cycle) gas find
Energy consumption
cavity of an oven dur
(WWh/cycle) gas find
Energy Efficiency Inc.
Compty v
Brand
Model | ing a cycle in energy) E C required to hing a cycle in energy) E C ex per cavity Informatio th EU directions and or as | conventional mode per cavity (M.Moyale)
set as dandardood load in a gas-fred
fas-forced mode per cavity (M.Moyale)
EEI cavity EEI cavity Stor downselfor decettic hobs: 3000 EESE — Response 3000 EESE — Response 1000 10 | × | | cavity of an oven dur
(WWh/cycle) gas find
Energy consumption
cavity of an oven dur
(WWh/cycle) gas find
Energy Efficiency Inc.
Compty v
Brand
Model | ing a cycle in
energy) E.C.;
required to hing a cycle in
energy) E.C.;
ex per cavity
Informatio
ith EU directi | conventional mode per cavity (M.Moyale)
set as dandardood load in a gas-fred
fas-forced mode per cavity (M.Moyale)
EEI cavity EEI cavity Stor downselfor decettic hobs: 3000 EESE — Response 3000 EESE — Response 1000 10 | × | | cavity of an oven duri
(kWhicycle) gas that
Energy consumption
cavity of an oven duri
(kWhicycle) gas find
Energy Efficiency Inc.
Comply v
Brand
Model
Type of hob
Number of cooking 2 | ing a cyde in energy) E C i required to hing a cyde in energy) E C i required to hing a cyde in energy) E C i ex per cavity informatio ith EU directions and or at Radiant Co | conventional mode per cavity (M.Moyale) set as dandardoed load in a gas-fred fan-forced mode per cavity (M.Moyale) EEI cavity To for convenitor, electric hobe ver wolferful C. Regulation No 65/2014 Little | × | | cavity of an oven duri
(kWhicycle) gas that
Energy consumption
cavity of an oven duri
(kWhicycle) gas find
Energy Efficiency Inc.
Comply v
Brand
Model
Type of hob
Number of cooking 2 | ing a cyde in energy) E C is required to hing a cyde in energy) E C is energy) E C is energy) E C is energy) E C is energy | conventional mode per curviny (Mullicycle) set a standardized load in a gas Fined set a standardized load in a gas Fined set a standardized load in a gas Fined gas Carriy (1) Est carry The dominate electric holes so 20001555 C. Reguration to 2000156 Sectorized Se | × | | cavity of an oven dull
(kWhicyde/gas final
Energy consumption
cavity of an oven dull
(kWhicyde/gas final
Energy Eff Dency Inc
Compby v
Brand
Model
Type of hob
Number of cooking 2
Heating Technology | ing a cyde in energy) E C j required to hing a cyde in energy) E C j ex per cavity Informatio the U directi Radiant Co Induction C Solid Plater | conventional mode per curbly (Multipola) with a packed policy of the per curbly (Multipola) with a packed per curbly (Multipola) EEE carby The domination disease holds | × | | cavity of an oven dull
(kWh/cycle/gas final
Energy consumption
cavity of an oven dull
(kWh/cycle/gas final
Energy Effciency Inc
Comply v
Brand
Model
Type of hob
Number of cooking 2 | ing a cyde in energy) E C j required to hing a cyde in energy) E C j ex per cavity Informatio the EU directi E | conventional mode per curvity (Multicyde) war a spatial feed of the first and a space feed war a spatial feed of the first and a space feed war a spatial feed of the first and a space feed war a spatial feed of the first and a space feed war and a spatial feed of the first and a space feed war and a spatial feed of the first t | 4
× | | cavity of an oven dull
(kWhicycle ()gas find
Energy consumption
cavity of an oven dull
(kWhicycle) (gas find
Energy Effdency Inc
Comply v
Brand
Model
Type of hob
Number of cooking 2
Heating Technology | ing a cycle in energy) E C j required to hing a cycle in energy) E C j ex per cavity Informatio the EU directi Radiant Co Induction C Solid Plates cones or Solid Plates cones or | conventional made per curvity (Multicydo) and a standardized load in a gas fined and a standardized load in a gas fined associately (1) load per curvity (Multicydo) EEI carly (1) EEI carly (2) EEI carly (2) EEI carly (3) (4) c | 4
× | | cavity of an oven dull
(White/cip/gas find
Energy consumption
cavity of an oven dull
(White/cip/gas find
Energy Effdency Int
Compty v
Brand
Model
Type of hob
Number of cooking 2
Heating Technology
For circular cooking 3
area, diameter of use | ing a cyde in energy) E C j required to hing a cyde in energy) E C j ex per cavity Information the EU direction Radiant Co Induction C Solid Plate Sol | conventional made per curvity (Multicyde) war a gradenicky (Multicyde) war a gradenicky (Multicyde) war a gradenicky (Multicyde) ges curvity (Multicyd | 18
14
14 | | cavity of an oven dull
(kWhicyde/gas final
Energy censum ption
cavity of an oven du
(kWhicyde/gas final
Energy Effoency Inc
Compby v
Brand
Model
Type of hob
Number of cooking 2
Heating Technology | ing a cyde in energy) E C j required to hing a cyde in energy) E C j ex per cavity Information the EU direction Radiant Co Induction C Solid Plate Sol | conventional mode per curvity (Multicyda) and a sandandhoid load in a gas fined as curvity (1) use per curvity (Multicyda) gas curvity (1) use per curvity (1) use per curvity (1) use gas curvity (1) use per curvity (1) use per curvity (1) use gas curvity (1) use per | 18
14
14 | | cavity of an oven during control of a coven during consummation cavity of an oven during cavity of an oven during cavity of an oven during cavity of a coven | ing a cyde in energy) E C i required to hing a cyde in energy) E C i see a cyde in energy) E C i energy) E C i energy) E C i energy) E C information in EU direction and or air Radiant Co. Induction C Solid Plates ones or a cyde ser according nearest S | conventional made per curvity (Multicyda) war a practice of curvity (Multicyda) war a practice of curvity (Multicyda) war a practice of curvity (Multicyda) war only | 18
14
14 | | cavity of an oven during control of the | ing a cyde in energy) E C i required to in in ing a cyde in energy) E C i ex per cavity information the EU direction in dir | conventional mode per curvity (Multicydo) and a spatial feed of the first and a spatial feed and a spatial feed of the first and a spatial feed and a spatial feed of the first and a spatial feed and a spatial feed of the first and a spatial feed and a spatial feed of the first sp | 18
14
14 | | cavity of a oven du
Wirthordor's gas had oven du
Wirthordor's gas had oven du
Wirthordor's gas to
cavity of a oven du
Wirthordor's gas to
Campby of
Grand
Windows oven du
Wirthordor's
Campby of
Grand
Windows oven du
Windows du | ing a cyde in energy) E C i energy E C i energy i | conventional made per curvity (Multicyde) set of anniholded lead in a gas fined each office (1) and anniholded lead in a gas fined each office | 18 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 | | awity of an oven during
Energy consumption
awity of an oven during
Energy consumption
awity of an oven during
Energy ET Gency inc.
Comply of
Tomply of
Tomply of
Type of hob
Number of cooting 2
Heating Technology
For circular cooking 2
east demeter of use
area demeter of
the min (plon)
For production of
For non-course products of
For non-course products of
For non-course single and cooking
For consumption of
For non-course single and cooking
For cooking | ing a cyde in energy) E C i experiented to indicate the i | conventional mode per curvity (Multicyda) war y archerication toward in a pair fine war y archerication toward in a pair fine war y archerication toward in a pair war y archerication toward in a pair war y archerication toward in a pair war y archerication toward y (Multicyda) war | 18 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 | | awity of an oven during
Energy consumption
awity of an oven during
Energy consumption
awity of an oven during
Energy ET Gency inc.
Comply of
Tomply of
Tomply of
Type of hob
Number of cooting 2
Heating Technology
For circular cooking 2
east demeter of use
area demeter of
the min (plon)
For production of
For non-course products of
For non-course products of
For non-course single and cooking
For consumption of
For non-course single and cooking
For cooking | ing a cyde in energy) E C i experiented to indicate the i | conventional mode per cavity (Maleyse) was a standard (1) and a pair land was cavity (1) standard stan | 18 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 | | awity of an oven during
Energy consumption
awity of an oven during
Energy consumption
awity of an oven during
Energy ET Gency inc.
Comply of
Tomply of
Tomply of
Type of hob
Number of cooting 2
Heating Technology
For circular cooking 2
east demeter of use
area demeter of
the min (plon)
For production of
For non-course products of
For non-course products of
For non-course single and cooking
For consumption of
For non-course single and cooking
For cooking | ing a cyde in energy) E C i experiented to indicate the i | conventional mode per cavity (Maleyse) was a standard (1) and a pair land was cavity (1) standard stan | 18 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 | | castly of a oven due castly of a oven due castly of a conduct of the castly | ing a cycle in energy) E C i energy en | conventional mode per cavity (Multicydo) war a systemical control (1) (1) war a systemical control (1) war a systemical | 188 | | cashy of a oven du ov | ing a cyde in energy) E C energy ene | conventional made per curvity (Multicyda) with a standardisc transfer as year fine with a standardisc transfer as year fine the choosed mode per curvity (Multicyda) gas curvi | 18 14 14 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | | cavity of a oven du
Wirthordor's gas had oven du
Wirthordor's gas had oven du
Wirthordor's gas to
cavity of a oven du
Wirthordor's gas to
Campby of
Grand
Windows oven du
Wirthordor's
Campby of
Grand
Windows oven du
Windows du | ing a cyde in energy) E C energy ene | conventional mode per carrily (Milleydo) was a practical form of the carrily (Milleydo) was a practical form of the carrily (Milleydo) was perfectly (Milleydo) was carried | 188
144
141
188
 | | cashy of a oven du ov | ing a cyde in energy) E C energy ene | conventional mode per cavity (Maleydo) and a standard (1) standa | 188
144
141
188
 | | cashy of a oven du ov | ing a cyde in energy) E C energy ene | conventional mode per cavity (Malyce) was a standard (1) and a past lend was a past lend (1) and (1) and (1) and (1) was carry (1) and (1) and (1) and (1) was carry (1) and (1) and (1) and (1) was carry (1) and (1) and (1) and (1) was carry (1) and (1) and (1) and (1) was carry (1) and (1) and (1) and (1) was carry (1) and (1) and (1) was carry (1) and (1) and (1) was carry ca | 188
144
141
188
 | | cashy of a oven due described in a condition of the condi | ing a cycle in constyle (c) con | conventional mode per cavity (Maleydo) and a standard (1) standa | 104
X
4
X
184
184
184
194
194
194 | 7737186365 / 285368184 / AA